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Abstract – Source localization is a significant task in the contagion process. In this paper, we
study the problem of locating multiple sources in complex networks with limited observations. We
propose a backward diffusion-based source localization method and apply it on several networks,
finding that multiple sources can be located with high accuracy even when the fraction of observers
is small and the time delay along the links are not known exactly. By comparing different observer
placement strategies, we find that choosing small-degree nodes as observers is better than the other
strategies.

Copyright c© EPLA, 2016

Introduction. – Many diffusion dynamics taking place
on complex networks are initiated from a small num-
ber of nodes, e.g., an epidemic spreading among con-
tact relationships, a rumour propagating through social
networks, and a computer virus spreading through the
Internet. Locating the sources of diffusion efficiently and
accurately has very important applications in practice. To
date, several approaches have been proposed to identify
the source. Shah and Zaman [1] were pioneers in sys-
tematically studying the problem of estimating infection
sources in a susceptible-infected (SI) model. Later, sev-
eral methods [2–7] were successively proposed to locate
the source using SI, SIR and SIS models. Recently, some
scholars extended their methods to the multi-source local-
ization problem in an SI model situation [3,8]. Although
the listed works answer some key questions about source
localization, the assumption that the complete snapshot
of the states of all nodes is available is expensive to obtain
and is impossible for large networks. To overcome this lim-
itation, many researchers [9–13] proposed several source
detection methods based on partial observations in which
only a limited fraction of nodes can be observed. However,
most of these works with partial observations focus on the
single-source detection problem, and little attention has
been paid to multiple source localization problems. When
dealing with multiple sources, the computational complex-
ity of previous approaches grows exponentially with an
increasing number of sources.

(a)E-mail: wenxuwang@bnu.edu.cn
(b)E-mail: yfan@bnu.edu.cn

In this paper, we study the multiple source localization
problem with partial observations. We propose a back-
ward diffusion-based multi-source localization approach
and test its performance on several networks. We also
study the effect of observer placement strategy on local-
ization accuracy.

The following paper is organized as follows. We
first introduce the propagation model and propose the
multi-source localization method. Then, we show the per-
formance of our method with respect to fractions of ob-
servers, network structures and time delays along the
links. Finally, we investigate the performance of differ-
ent observer placement strategies.

Model and method. –

Propagation model. We first introduce the network
diffusion model. The underlying network is defined as a
finite, undirected graph G = {V,E}, which consists of a
set of nodes V and a set of edges E. The topology of
the network is assumed to be known and static during the
diffusion process. The diffusion source set, S = {sm}M

m=1,
is the set of the nodes that initiates the diffusion.

In previous works, numerous information/virus spread
models are used to model the diffusion process, e.g., SI,
SIS, and SIR. Here, we use a simple diffusion model as-
sociated with a time delay to model the propagation that
is also used in refs. [9,11,14]. The details are described as
follows and are shown in fig. 1.

1) In the network, at time t, all nodes are in two states:
informed (the node has the information) or uninformed
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Fig. 1: (Color online) An example of the diffusion process.
(a) is a weighted undirected graph G. The numbers on the
edges are the corresponding time delays. The size of each
node is in proportion to its degree. (b) is the diffusion pro-
cess initiated from sources S = {s1, s2}. The spreading paths
from the two sources s1, s2 are highlighted with orange arrows
and brown arrows, respectively. The arrival time at observers
O = {O1, O2, O3, O4} is recorded.

(the node does not have the information). Only the source
nodes are in the informed state at the initial time t0.

2) The informed nodes forward the information to their
uninformed neighbours. For clarity, let us assume that
node i receives the information for the first time and be-
comes informed at time ti. Then, i will transfer the in-
formation to all its neighbours, denoted as H(i), so that
each uninformed neighbour node j ∈ H(i) receives the
information at time ti + θLij

where θLij
is the transmis-

sion time delay associated with edge Lij . The time delay
for different edges follows a known joint distribution, e.g.,
Gaussian or uniform. Thus, for any node i ∈ V , the time
ti that i is informed is

ti = t0 + min{Δs1,i,Δs2,i, · · ·,ΔsM ,i}, (1)

where Δsm,i is the shortest transmission time between sm

and i.
3) The process continues until all of the nodes in V have

been informed.
Let O = {ok}K

k=1 denote the set of K observers, whose
informed times are known. Differing from the settings in
ref. [9] (they require the time and from whom they obtain
the information), each observer can only measure the time
it becomes informed. Specifically, the observers’ informed
time is {to1 , to2 , . . . , toK

}.
Multisource localization. Once we obtain the final in-

fected graph and enough observers, we can locate the
sources with high accuracy.

For node i and source node sm, if Δsm,i is the minimum
of {Δs1,i,Δs2,i, . . . ΔsM ,i}, we say that node i is diffused
by source sm, that is i ∈ Πsm

, where Πsm
denotes the

diffusion set of source sm. Thus, the original vertex set V
can be decomposed into M diffusion set and one source
node set, i.e., V = Πs1 + Πs2 + · · · + ΠsM

+ S.
Then, we can obtain the relationship between the in-

formed time and the diffusion set. For any node i ∈ Πsm
,

according to eq. (1), the informed time is

ti = t0 + min{Δs1,i,Δs2,i, . . . ,ΔsM ,i} = t0 + Δsm,i. (2)

Fig. 2: (Color online) Illustration of the backward diffusion-
based multi-source localization method. (a) Backward diffu-
sions from each observer; the number marked at each node is
Γ(i, ok) = tok − Δi,ok . (b) For a source node sm, all values of
Γ(sm, i), ∀i ∈ V are arranged in a circle with radius propor-
tional to Γ(sm, i). All the points are bounded in a circle whose
radius is t0, that is Γmax

sm
= t0. (c) For a normal node j �∈ S,

some values of Γ(j, i) will exceed the boundary, resulting in
Γmax

j > t0. The sources can be then identified as the nodes
whose Γmax

s are minimal.

Thus, for any pair of informed node and source node, e.g.,
i and s, respectively, the estimated informed time of s
from the viewpoint of node i is

Γ(s, i) ≡ ti − Δs,i ≤ t0. (3)

When i ∈ Πs,

ti = t0 + min{Δs1,i,Δs2,i, . . . ,ΔsM ,i} = t0 + Δs,i,

Γ(s, i) = ti − Δs,i = t0;

when i �∈ Πs,

ti = t0 + min{Δs1,i,Δs2,i, . . . ,ΔsM ,i} < t0 + Δs,i,

Γ(s, i) = ti − Δs,i < t0,

then, for s, the maximum of Γ(s, i) for all i ∈ V , denoted
as Γmax

s , is t0. However, for a node j �∈ S, there must exist
some i ∈ V , such that Γ(j, i) = ti−Δj,i > t0, for example,
the node j itself,

Γ(j, j) = tj − Δj,j = tj > t0,

so Γmax
j > t0.
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Fig. 3: (Color online) Performance of multiple source localiza-
tion on model networks. (a) ER random network. (b) WS
small-world network; the rewiring probability is 0.1. (c) BA
scale-free network. The network size used here is N = 100,
and the average degree is 〈k〉 = 4. The time delay along the
links follows a Gaussian distribution N(1, 0.252) and only the
mean delay of all links is used to identify the sources.

Fig. 4: (Color online) Performance of multiple source localiza-
tion on real networks. The number of sources is 3 and the time
delay associated with each link follows N(1, 0.252). Detailed
information from all the networks is shown in table 1.

Figure 2(a) shows the backward diffusion initiated from
each observer, and the estimated Γ(∗, ok) is marked at
each node. As for a source node sm, by arranging all the
values of Γ(sm, i) ∀i ∈ V in a circle, shown in fig. 2(b), all
the points are bounded in the boundary representing t0;
while for a node, j, that is not a source, shown in fig. 2(c),
some values of Γ(j, i) will exceed the boundary, resulting
in Γmax

j > t0. According to the above analysis, we can see
that the values of the sources’ Γmax

s are minimal; then, we
can identify the sources based on this rule. Specifically,
for each node in the network, we can calculate the value
of Γmax against all the observers and select the nodes with

Table 1: Description of real networks analysed in this pa-
per. N and L denote the total numbers of nodes and links,
respectively.

Type Name N L

Internet Internet1997 [15] 3015 5156
Internet1999 [15] 5357 10328

Transportation USAtop500 [16] 500 2890
Airline [17] 332 2126

Power Grid Power [18] 4941 6594
Social network Facebook [19] 4039 88234

the smallest value of Γmax as the source nodes,

Ŝ(O) = argmini∈V Γmax
i

= argmini∈V {argmaxo∈O Γ(i, o)}. (4)

The computational complexity of our method is
O(KN log N) and is independent of the number of sources.

Results. – To quantify the validity and efficiency of
our multiple source localization approach in terms of the
fraction of observers, we study the success rate of locat-
ing source nodes for homogeneous and heterogeneous net-
work structures, including the Erdös-Rényi (ER) random
network, the Watts-Strogatz (WS) small-world network,
the Barabási-Albert (BA) scale-free network and some real
networks. Here the area under the receiver operating char-
acteristic curve (AUC) is used to quantify the localization
performance of our approach. We first rank the nodes
based on their values of Γmax

i in ascending order. The
true positive rate (TPR) and false positive rate (FPR)
that are used to calculate AUC are defined as follows:

TPR(l) =
TP (l)

M
(5)

where TP (l) is the number of true positives in the top l
predictions in the candidate list, and M is the number of
sources,

FPR(l) =
FP (l)
N − M

, (6)

where FP (l) is the number of false positives in the top l
predictions in the candidate list. The higher the value of
AUC is, the better localization performance will be.

Figure 3 shows the localization accuracy against a dif-
ferent fraction of observers for a different number of
sources. The sources and observers are selected ran-
domly. As we can see, for all the network structure and
number of sources, only approximately 20% of observers
are needed, rendering relatively high localization accuracy
(AUC ≥ 0.9). Additionally, the increase of sources en-
hances the challenge of successfully locating the sources.
Compared with the results of the ER network and the
WS network, the sources of diffusion in the BA network
are more challenging to locate.

We also use several types of real networks to test
the performance of our method, including the power
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Fig. 5: (Color online) Performance of different observer placement strategies for ER, BA and WS networks. The white solid
lines and black dashed lines are the boundaries with an AUC = 0.98 and AUC = 0.95, respectively. The network size used here
is N = 100, and the average degree is 〈k〉 = 4. The rewiring probability of the WS network is 0.1.

Table 2: Minimum fraction of observers. The minimum frac-
tion nmin

o of randomly selected observers that assures AUCloc =
0.9 of locating the sources of spreading dynamics in ER, WS
and BA networks. The time delay of the links follow a Gaus-
sian distribution N(1, 0.252), N(1, 0.52) with different standard
variance and uniform distribution in the range (0.5, 1.5). The
mean delay of all links is used to identify the sources. The
number of sources is M = 2, the network size is N = 100 and
the average node degree is 〈k〉 = 4. The results are obtained
by averaging over 1000 independent realizations.

Network type
Delay distribution ER WS BA

N(1.0, 0.252) 0.15 0.11 0.22
N(1.0, 0.502) 0.30 0.19 0.44
N(1.0, 1.002) 0.93 0.90 0.94

U(0.75, 1.25) 0.13 0.09 0.16
U(0.50, 1.50) 0.17 0.12 0.25
U(0.25, 1.75) 0.39 0.17 0.51

grid network, social communication network, internet and
transportation network, shown in fig. 4. The performance
of localization on these types of networks differs signifi-
cantly. The power grid network is the easiest one because
of its regular structure; the localization accuracy achieves
AUC = 0.9 with only approximately 2% of observers.
However, for the air transportation networks, up to ap-
proximately 50% of observers are needed for achieving an
AUC = 0.90 in our simulation.

Infection time delay. The time delay of links will af-
fect the source localization performance. Table 2 displays
the minimum fraction nmin

o of observers for achieving
AUCloc = 0.9 for locating the sources in homogenous and

inhomogeneous networks with a Gaussian distribution and
a uniform distribution of time delay along the links. The
results imply that our algorithm is effective when the vari-
ation of the time delays on the links is limited.

Performance of the observer placement strategy. In
this section we focus on the performance of differ-
ent observer placement strategies with different network
topological properties. Here, we adopt several node
centrality-based observer placement strategies, including
large degree, small degree, large betweenness, and large
closeness.

The localization accuracy of the basic random strategy
and the above four observer placement strategies are in-
vestigated in ER, WS and BA networks, as shown in fig. 5.
In this figure, the black dashed lines are the boundary of
AUC < 0.95 and AUC > 0.95, and the white solid lines
separate the regions of AUC < 0.98 and AUC > 0.98. As
we can see, generally, the five observer placement strate-
gies show similar performance on each network topology;
each strategy shows a similar performance pattern across
the three types of networks. Compared with all the other
strategies, the small-degree strategy achieves a relatively
higher accuracy.

Discussions. – In this work, we investigated a multiple
source localization problem and proposed a source local-
ization method based on backward diffusion. The com-
putational complexity of our method is comparatively low
and is independent of the number of sources. Simulations
on different networks show that we can obtain highly ac-
curate estimations in identifying the sources. Regardless
of this, the method could still be improved. First, simula-
tions on networks with weight following a Gaussian distri-
bution or a uniform distribution are satisfying, while other
distributions remain to be studied. Second, we still do not
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know how to select the minimum number of observers in an
arbitrary network. In this paper, we compare the perfor-
mance of several observer placement strategies; the results
imply that none of these strategies show a dominant per-
formance. The recent developed observability [20] of com-
plex networks is a promising method for efficiently placing
the observers. We may overcome such obstacles by using
the recently developed compressed sensing-based network
reconstruction method [21,22]. Third, incorporating side
information remains undone. In some practical conditions,
we can obtain the direction of diffusion among neighbours
and modify the diffusion graph for further investigations.
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